skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pedarsani, Ramtin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Large language models (LLMs) have revolution- ized machine learning due to their ability to cap- ture complex interactions between input features. Popular post-hoc explanation methods like SHAP provide marginal feature attributions, while their extensions to interaction importances only scale to small input lengths (≈20). We propose Spectral Ex- plainer (SPEX), a model-agnostic interaction attri- bution algorithm that efficiently scales to large input lengths (≈1000). SPEX exploits underlying nat- ural sparsity among interactions—common in real- world data—and applies a sparse Fourier transform using a channel decoding algorithm to efficiently identify important interactions. We perform exper- iments across three difficult long-context datasets that require LLMs to utilize interactions between inputs to complete the task. For large inputs, SPEX outperforms marginal attribution methods by up to 20% in terms of faithfully reconstructing LLM out- puts. Further, SPEX successfully identifies key fea- tures and interactions that strongly influence model output. For one of our datasets, HotpotQA, SPEX provides interactions that align with human annota- tions. Finally, we use our model-agnostic approach to generate explanations to demonstrate abstract rea- soning in closed-source LLMs (GPT-4o mini) and compositional reasoning in vision-language models. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. Free, publicly-accessible full text available January 1, 2026
  4. Free, publicly-accessible full text available December 1, 2025